HOLIDAY HOMEWORK

- 1. Let R be a relation on the set N be defined by $\{(x, y) \forall x, y \in \mathbb{N}, 2x + y = \mathbb{N}\}$ 41 }. Then, R is
 - a. (a) Reflexive (b) Symmetric (c) Transitive (d) None of these
- 2. For real numbers x and y, we write x R y \leftrightarrow cex y + $\sqrt{2}$ is an irrational number. Then, the relation R is
 - (a) Reflexive (b) Symmetric (c) Transitive (d) None of these
- 3. The relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$ on set $A = \{1, 2, 3\}$ is
 - (a) Reflexive but not symmetric
 - (b) Reflexive but not transitive
 - (c) Symmetric and transitive
 - (d) Neither symmetric nor transitive
- 4. Consider the non-empty set consisting of children in a family and a relation R defined as a R b if a is brother of b. Then R is
 - (a) symmetric but not transitive
 - (b) transitive but not symmetric
 - (c) neither symmetric nor transitive
 - (d) both symmetric and transitive
- 5. Let $P = \{(x, y) : x^2 + y^2 = 1, x, y \in \mathbb{R} \}$. Then, P is
- 6. Reflexive (b) Symmetric (c) Transitive (d) Anti-symmetric
- 7. Let S be the set of all real numbers. Then, the relation
 - $R = \{(a, b) : 1 + ab > 0\} \text{ on S is }$
 - (a) Reflexive and symmetric but not transitive
 - (b) Reflexive and transitive but not symmetric
 - (c) Symmetric, transitive but not reflexive
 - (d) Reflexive, transitive and symmetric
- 8. Let R be the relation in the set Z of all integers defined by

 $R = \{(x, y) : x - y \text{ is an integer}\}$. Then R is

- 9. reflexive (b) symmetric (c) transitive (d) an equivalence relation
- For the set $A = \{1, 2, 3\}$, define a relation R in the set A as follows 10. $R = \{(1, 1), (2, 2), (3, 3), (1, 3)\}$ Then, the ordered pair to be added to R to make it the smallest equivalence relation is
 - a. (a) (1, 3) (b) (3, 1)
- (c) (2, 1)
- (d) (1, 2)

min	Let $A = \{1, 2, 3\}$ ard imum number of ord ivalence relation, is				
-	•	(b) 5	(c) 1	(d)4	
12.Let 7 3), a 13. a 14. defi 15.	A = $\{1, 2, 3\}$. Then, which are reflexive a . (a) 1 Let f: R \rightarrow R be a f . (a) Injective (b) Let X = $\{0, 1, 2, 3\}$ ned by y = x^2 , is one-one onto (b) o	the number of and symmetric b (b) 2 function defined Surjective (c) } and Y = {-1, ne-one into (c)	relations corput not transicut not transicut $(c) 3$ by $f(x) = x^3$ -Bijective $(0, 1, 4, 9)$ a many-one of	ntaining (1, 2) itive, is + 4, then f is d) None of the nd a function f	(d) 4 se ::X →Y
	Let $g:R\to R$ $g(x) =$	•		5	
	g is one-one on R	• •	_		
	g is bijective on R The mapping f: N	` '			ic the cet
of n 20. a b 21.	atural numbers, is The function f: R → . (a) a one-one function . (c) a bijection	R given by f(x) tion is said to be on	$(b) = x^3 - 1$ is (b) an onto (d) neither	function one-one nor o	nto
	. (a) f(x) = y (b) 0		f(x) + y = 0	(d) f(y) + x =
23.	Let R be the relation (1, 1), (4, 4), (1, 3), (a) R is reflex (b) R is reflex (c) R is symm (d) R is equivalent Let A = {1, 2, 3} and a strong from A to B are	(3, 3), (3, 2)) ive and symme ive and transitive netric and transicalence relation and B = {a, b, c	tric but not t ve but not sy tive but not	ransitive mmetric	
а	. (a) 2 4	(b) 8	(c) 6		(d)

			f surjective func	tions from	A to B whe	$ere A = \{1, 2, 3, 4\}$
aı		= {a, b} is a) 14	(b) 12	(c) 2		(d) 15
25.		he function f a) one-one bu	: R → R defined ut not onto	by f (x) =		– 2) (x – 3) is ut not one-one
26.	(c) both one-o	ne and onto		(d) neither	one-one nor onto
27.	Ιſ	$f\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 \\ 5 \end{bmatrix}$	$\begin{bmatrix} 2 \\ -3 \end{bmatrix} = I_2$, then A=			
		-1 03	$(b)\begin{bmatrix}1 & 1\\0 & 1\end{bmatrix}$	-1 1-	(d) $\left[egin{matrix} 0 \\ 1 \end{smallmatrix} \right]$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
28.		10 13	$en(A^{-1})^3$ is equa		-4 06-	
	a. (a	$a)\frac{1}{27}\begin{bmatrix} 1 & -26\\ 0 & 27 \end{bmatrix}$ $(d)\frac{1}{27}\begin{bmatrix} -1\\ 0 \end{bmatrix}$	$ (b)^{\frac{1}{27}} \begin{bmatrix} 1 & 26 \\ 0 & 27 \end{bmatrix} $ $ -26 \\ -27 \end{bmatrix} $	$\binom{0}{7}$ $(C)^{\frac{1}{27}}$	$\begin{bmatrix} 1 & -26 \\ 0 & -27 \end{bmatrix}$	
29.	Ιſ	$fA = \begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}$ an	d A^{-1} =mA,then	m is equa	l to	
30.	_		/3 (c)-1/3 ntity matrix of o	rder 3,the		
	a. (a	a)O xist	-		•	(d)Not necessarily
31.	Ιſ	f A and B are	2 non-zero mat B are singular		_	then f them is singular
32.	Ì	f A is a singul	hem is singular ar matrix then <i>i</i> natrix	A.adjA=	. ,	these
	F					erval [-4,-1], matrix
LA			(b) 2	(c) 1	(d) 3	

		-	atrices of sixe na wing is always t	Kn, such that A^2 - B^2 :	=(A+B)(A-
-			•	or B is a zero matr	rix
			tity matrix (d) A		
	,			onal element all difthen c_{ij} is equal to	ferent and
a) a	$b_{ij}b_{ij}$ (t	o) $a_{ii}b_{ij}$	(c) $a_{ij}b_{ij}$	(d) $a_{ij}b_{ji}$	
	,, ,	,	, ,	adjA is equal to	
			(d) n		
37.	A square ma	atrix P satisfi	$es P^2 = I - P whe$	ere I is the identity	matrix. If
$P^n =$	=5I-8P, then	n =			
(a) 4	4(b) 5	(c) 6	(d) 7		
38.	If $A = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$	$\begin{bmatrix} x+2 \\ x+1 \end{bmatrix}$ is syr	nmetric ,then x	=	
		(c) 2			
				that A'B and BA' a	are defined,
	B is of the t				,
			(c) 4X4	(d) 4X3	
	•	-	STUDY QUEST		
the	dice, Aman's throw every t ers while B b	sister Lata o time belongs e the set of a	bserved and not to set {1,2,3,4, all possible outco	during Covid-19.Word the possible ou 5,6}.Let A be the somes. Let ion given above, a	tcomes of set of
(i)Let	R:B→B be de	efined by $R =$	$\{(x,y): y = x\}$ is		
(a) (b) (c) (d)	Reflexive ar	nd symmetric ive but not sy	out not symmet but not transiti ymmetric and tr	ve	
(ii) Le	t R :B→B be	defined by R	={(1,2)(2,2)(1,3	3)(3,4)(3,1))(4,3)(5,5)}.Then

(a)Symmetrio (c) Transitive		(b) Reflexive (d) None of these three			
(iii) Let R :B	\rightarrow B be defined by 2,2)(3,3)(4,4)(5,5		or these times		
(a)Symmetric Transitive and	c d symmetric	(b) Reflexive and Transitive (d) Equivalence			
(iv) Lata war many relations		mber of relations p	ossible from A to B .I	How	
(a)36	(b) 64	(c) 6!	(d) 2 ¹²		
• •	nts to know the nu ctions are possible		rom A→B, How many	/	
(a)36	(b) 64	(c) 6!	(d) 2 ¹²		
domain is put ir on the above in	n place of x.This ro information, answ	bot works and perf	from $f(x) = \frac{x-2}{x-1}$. If the value of works.		
(a)On all real values except 2		(b)On all real values except 1 (d)On all real values except {1,2}			
. ,	otes the number of		, then range of the w	vorks	
(a) $R - \{1\}$	(t	$(R - \{2\})$			
(c) $R - \{1,2\}$		(d)On all real va	lues		
(iii) If this funct	ion is defined fron	$f: R-\{1\} \rightarrow R-\{1\}$			
(a)Injective		(b) Surjective			
(c)Bijective	(d) Into			
(iv) If a Robot f	ollows the $f:R-\{1\}$	$\rightarrow R$, then f(x) is			
		pg. 5			

(a)Injective

(b) Surjective

(c)Bijective

(d) Into

(v) If a Robot follows the $f:N-\{1\} \rightarrow R-\{1\}$, then f(x) is

(a)Injective

(b) Surjective

(c)Bijective

(d) Into